U.S. DEPARTMENT OF COMMERCE National Technical Information Service AD-A030 960 # Concrete for Reactor Vessels Army Engineer Waterways Experiment Station Vicksburg Miss May 72 Product Liability Insurance: Assessment of Related Problems and Issues. Staff Study PB-252 204/PAT 181 p PC\$9.50/MF\$3.00 The World States Evaluation of Home Solar Heating System UCRL-51 711/PAT 154 p PC\$6.75/MF\$3.00 **Developing Noise Exposure Contours for General Aviation Airports** ADA-023 429/PAT 205 p PC\$7.75/MF\$3.00 Cooling Tower Environment, 1974. Proceedings of a Symposium Held at the University of Maryland Adult Education Center on Mar. 4-6, 1974 CONF-74 0302/PAT 648 p PC\$13.60/MF\$3.00 Biological Services Program. Fiscal Year 1975 PB-251 738/PAT 52 p PC\$4.50/MF\$3.00 An Atlas of Radiation Histopathology TID-26-676/PAT 234 p PC\$7.60/MF\$3.00 Federal Funding of Civilian Research and Development. Vol. 1. Summary PB-251 266/PAT 61 p PC\$4.50/MF\$3.00 Federal Funding of Civilian Research and Development. Vol. 2. Case Studies PB-251 683/PAT 336 p PC\$10.00/MF\$3.00 Handbook on Aerosols TID-26-608/PAT 141 p PC\$6.00/MF\$3.00 for the Assessment of Ocean Outfalls ADA-023 514/PAT 34 p PC\$4.00/MF\$3.00 Guidelines for Documentation of Computer Programs and Automated Data Systems PB-250 867/PAT 54 p PC\$4.50/MF\$3.00 NOx Abatement for Stationary Sources in Japan P8-250 586/PAT 116 p PC\$5.50/MF\$3.00 U.S. Coal Resources and Reserves PS-252 752/PAT 16 p PC\$3 50/MF\$3.00 Structured Programming Series. Vol. XI. Estimating Software Project Resource Requirements ADA-016 416/PAT 70 p PC\$4.50/MF\$3.00 Assessment of a Single Family Residence Solar Heating System in a Suburban Development Setting PB-246 141/PAT 244 p PC\$8.00/MF\$3.00 Technical and Economic Study of an Underground Mining, Rubblization, and in Situ Retorting System for Deep Oil Shale Deposits. Phase I Report PB-249 344/PAT 223 p PC\$7.75/MF\$3.00 A Preliminary Forecast of Energy Consumption Through 1985 PB-251 445/PAT 69 p PC\$4.50/MF\$3.00 ### **HOW TO ORDER** When you indicate the method of payment, please note if a purchase order is not accompanied by payment, you will be billed an addition \$5.00 ship and bill charge. And please include the card expiration date when using American Express. Normal delivery time takes three to five weeks. It is vital that you order by number (703) 557-4650 TELEX 89-9405 or your order will be manually filled, insuring a delay. You can opt for airmail delivery for a \$2.00 charge per item. Just check the Airmail Servic: box. If you're really pressed for time, call the NTIS Rush Order Service (703) 557-4700. For a \$10.00 charge per item, your order will be airmailed within 48 hours. Or, you can pick up your order in the Washington Information Center & Bookstore or at our Springfield Operations Center within 24 hours for a \$6.00 per item charge. You may also place your order by telephone or TELEX. The order desk number is (703) 557-4650 and the TELEX number is 89-9405. Whenever a foreign sales price is NOT specified in the listings, all foreign buyers must add the following charges to each order: \$2.50 for each paper copy; \$1.50 for each microfiche; and \$19.00 for each Published Search. Thank you for your interest in NTIS. We appreciate your order. Enter Grand Total | METHOD OF PAYMENT Charge my NTIS deposit account no Purchase order no Check enclosed for \$ Charge to my American Express Card account number | | | ADDRESS | | | | | |---|-----------------|------------|--------------------|--------------------|--------------------------------|-------------|--| | Card expiration date | | | Quan | | | | | | Airmail Services requested | liem Num | ter
——— | Paper Copy
(PC) | Microfiche
(MF) | Unit Price* | Total Price | | | Clip and mail to | | | | | | | | | NTIS | | | | | | | | | National Technical Information Service U.S. DEPARTMENT OF COMMERCE Sectorfield. / a. 22161 | All Prices Subj | ect to Ch | ange | | Sub Total
Additional Charge | | | W34m No. C-72-13 Cop.3 ADA030960 MISCELLANEOUS PAPER C-72-13 ## CONCRETE FOR REACTOR VESSELS J. E. McDonald May 1972 Published by U. S. Army Engineer Weterways Experiment Station, Vicksburg, Mississippi REPRODUCED BY NATIONAL TECHNICAL INFORMATION SERVICE U.S. DEPARTMENT OF COMMERCE SPRINGFIELD, VA. 22161 APPROVED FOR PUBLIC RELEASE; DISTINUATION. Destroy this report when no longer needed. Do not return it to the originator. The findings in this report are not to be construed as an official Department of the A.my position unless so designated by other authorized documents. MISCELLANEOUS PAPER C-72-13 # CONCRETE FOR REACTOR VESSELS Ьу J. E. McDonald May 1972 Published by U. S. Army Engineer Waterways Experiment Station, Vicksburg, Mississippi ARMY MRG VICKEBURG MIST APPROVED FOR PUBLIC RELEASE, DISTRIBUTION PINLIMITED #### FOREWORD This paper was prepared for the Joint Mississippi-Louisians Section Meeting, American Society of Civil Engineers, held at Gulfport, Mississippi, on 13-15 April 1972. The manuscript was reveiwed and cleared for presentation by the Oak Ridge National Laboratory and the Office, Chief of Engineers, U. S. Army. The studies which provided the information and data discussed herein were conducted by the Concrete Division, U. S. Army Engineer Waterways Experiment Station (WES), Vicksburg, Missis-ippi, under the sponsorship of the U. S. Atomic Energy Commission, Director of the WES during the preparation and publication of this paper was COL Ernest D. Peixotto, CE. Technical Director was Mr. F. E. Brown. `_ #### CONCRETE FOR REACTOR VESSELS* bу #### James E. McDonald** #### Background - 1. The economical production of nuclear power with the gas-cooled reactor concept requires a large nuclear core and high pressure; consequently, large thick-walled reactor vessels are required. The construction of such reactor pressure vessels with steel is extremely difficult; cherefore, prestressed-concrete vessels were adopted as a substitute. The prestressed-concrete reactor vessel (PCRV) is ideal for this application since it appears that there is no limit to the pressure and vessel size other than the limitation of concrete strength. - 2. Most PCRV's are of spherical or cylindrical configuration and are composite assemblies consisting of: (a) an inner gastight steel liner, (b) a concrete wall, and in the case of the cylindrical shape. (c) concrete ends, and (d) a suitable number of prestressing cables. The steel liner, which is about 1/2 to 1 in. thick, is anchored to the concrete wall so that the gas pressure forces are transmitted through its thickness directly to the concrete. In the case of a cylindrical design, the inside diameter may vary from 40 to 80 ft and the wall thickness may vary from 10 to 15 ft. The ends may be as thick as 20 ft or more. ^{*} Prepared for presentation at the Joint Mississippi-Louisiana Section Meeting, American Society of Civil Engineers, 13-15 April 1972, Guliport, Miss. Based on in estigations conducted for the U.S. Atomic Energy Commission. ^{**} Empervisory Research Civil Engineer; Chief, Structures Section, Engineering Mechanics Branch, Concrete Division, U. S. Army Engineer Waterways Experiment Station, Corps of Engineers, Vicksburg, Miss. 39180. 3. The use of prestressed concrete in construction of nuclear reactor pressure vessels is a departure from usual civil engineering practice, and, as would be expected, many unusual problems arise in the design and construction of such a vessel. In spite of the tremendous amount of research on the properties of concrete, information regarding certain properties of concrete under particular conditions is often insufficient. This appears to be especially true in the case of the use of prestressed concrete for reactor pressure vessels. One of the most important aspects in the design and satety evaluation of a PCRV is the time-dependent deformation behavior of concrete is the presence of varying temperature, moisture, and loading conditions. Consequently a basic research program formulated and directed by Oak Ridge National Laboratory for the purpose of developing and improving the technology of PCRV's in the United Scates included a sizeable effort directed toward investigating the time-dependent deformation behavior of concrete under conditions exasting in a PCRV. Two of the projects included in this effort were a test of the moist to distribution in a PCRV wall and a multiaxial creep program, both pert. well at the Waterways Experiment Station (AES). and the second of the second second and second second in the second seco #### Moisture Migration in Consett 4. Information regarding the nature of moisture movement and rate of moisture loss in a concrete prossure vessel wall subjected to a temperature gradient is of interest in view of the influence of these parameters on the properties of concrete. In an effort to evaluate these effects, an experimental study of moisture migration in a pie-shaped concrete specimen (fig. 1) representing the flow path or hannel through a cylindrical wall of a PCRV was initiated. The test specimen selected was 9 ft im length with cross-sectional dimensions of 2 by 2 ft on one end and 2 ft by 2 ft 8 in. on the other end. The specimen was sealed against moisture loss on the small end (interior) and along the lateral surfaces and exposed to the atmosphere on the other end (exterior). In addition, the lateral surfaces were heated and insulated to simulate conditions in a PCRV where uniaxial moisture and heat flow prevail. 5. After casting of the test specimen, the temperature distribution, shrinkage, and moisture distribution were monitored for approximately 17 months. After this initial testing, a temperature gradient of 80 F was applied to the specimen, and the above-mentioned measurements were continued for an additional test period of 1 year. #### Test Specimen 6. The casting form for the moisture migration specimen with instrumentation, insulation, and moisture barrier in place is shown in fig. 2 immediately prior to casting. A concrete mixture proportioned with 3/4-in. maximum size crushed limestone aggregate to have a slump of 2 ± 1/2 in. and a compressive strength of 6000 psi at 28 days was used in casting the specimen. Upon completion of casting, the top was closed and moisture sealed to the remainder of the form. #### Effects of Concrete Hydration 7. Temperature in the freshly placed concrete rose after casting (fig. 3), peaking at all tations between 29 and 98 hours after placement. The highest temperature recorded, near the midsection of the specimen, was 168 F, a rise of 93 F. After reaching the peak values, temperatures started falling at a very gradual rate (fig. 4), stabilizing near room temperature about 60 days after casting. 8. Moisture in the concrete, as indicated by the nuclear surface moisture gage, was fairly constant in all sections except the two ends, particularly the open end (fig. 5). Variations in total concrete strain (fig. 6) followed essentially the same trends as the temperature. Effects of a Temperature Gradient. WARDENESSEE A LANGUAGE OF THE COURT - 9. Strain, temperature, and moisture in the concrete were in essentially steady states prior to application of the temperature gradient of 80 F to the specimen (fig. 7) approximately 17 months after casting. - application of heat were confined to that half of the specimen nearest the heat. After approximately I week, relatively uniform increases in temperature were noted throughout the specimen. The temperature gradient I year after application of heat was essentially the same as that shown at 21 days (fig. 8). Temperatures monitored by thermocouples at five different depths in each of three sections were fairly constant at different depths within a section. A temperature profile of the section nearest the heat indicated that the temperature differential between the interior and exterior of the specimen was within 1 F. - 11. Variations in total concrete strain along the specimen's center line at a result of applying a temperature gradient are shown in fig. 9. The highest indicated total strain was about 340 millionths (expansion) at the station nearest the heat. From this maximum, indicated total strains decreased in a generally linear manner to less than 25 millionths near the open end. Correcting these strains for thermal effects, assuming a linear coefficient of thermal expansion of 5.0×10^{-6} /F, changes in strain at each station during the 1-year test period were computed as shown in fig. 10. This indicates an expansion of approximately 20 millionths near the heated end with a generally linear decrease to a shrinkage of approximately 35 millionths near the open end. 12. Typical variations in concrete moisture at various stations along the top surface of the specimen as determined by a surface backscatter nuclear gage are shown in fig. 11. Based on a linear regression analysis, all 10 stations, with the exception of No. 2, indicated small decreases in moisture content over the test period. These decreases ranged from 0.03 to 0.55 lb/cu ft and averaged 0.23 lb/cu ft. Station No. 2 indicated an increase in moisture content of 0.17 lb/cu ft. The indicated average change in concrete moisture content for all stations was a decrease of approximately 1.5 percent. #### Discussion - 13. The fairly uniform temperatures at different depths within a section and the relatively fast flow of heat toward the two cool faces of the specimen during cement hydration indicate the boundary conditions were sufficient to simulate the flow path through a cylindrical wall of a PCRV where uniaxial moisture and heat flow prevail. - 14. Based on the results of this investigation, it appears that the magnitude of any changes in the specimen's strain and more ture state as a result of application of a temperature gradient was quite small. This indicates that the moisture movement and rate of mois ure loss in a PCRV wall subjected to a temperature gradient are such that these parameters should not affect the properties of concrete typical of that used in this investigation. #### Multiaxial Creep of Concrete - 15. The WES investigation was part of an overall investigation planted to provide information that could be used in predictions of vessel behavior for the many regimes of loading experienced under design and hypothetical accident conditions. This particular investigation is concerned with one strength (6000 ps' at 28 days), three aggregate types (chert, limestone, and graywacke), one cement (type II), two types of specimens (as-cast and a r-cried', two levels of temperature during test (73 and 150 F), and four types of loading (uniaxial, hydrostatic, biaxial, and triaxial). - 16. Concrete a de wich Tennessee limestone aggregate (3/4-in. maximum size) was chosen as the main mixture on the basis that it was representative of what might be used in a PCRV in most sections of the United States. Two other fixtures containing Alabama graywacke and chert, aggregate with elastic moduli lower and higher, respectively, than that of limestone, were used to provide information for comparison. - 17. The as-east specimens were sealed at casting and remained so throughout the tests. The resultant highly saturated concrete was representative of that in the interior of a mass of concrete such as a PCE. After 7 days of wet curing, the air-dried specimens were allowed to dry in air at 73 F and 50 percent relative humidity for the remainder of the 90-day period preceding testing. These specimens exhibited considerable moisture loss and wer representative of concrete near the exterior of a PCRV. In addition, specimens cured in lime-saturated water at room temperature for the required period were tested for strength control. - 18. The temperature levels during loading were selected as being representative of the limits of the range of concrete temperatures experienced in a nuclear reactor, 73 and 150 F corresponding to temperatures expected at the outer and inner surfaces, respectively, during normal operation. - 19. Test specimens were loaded in uniaxial, biaxial, hydrostatic, and triaxial states of stress with both axial stress (σ_A) and radial confining stress (σ_R) ranging from 0 to 2400 psi. #### Mixture Proportions 20. Three concrete mixtures were proportioned with type II portland cement and 3/4-in. maximum size aggregates whose moduli of elasticity ranged from 3.8 to 13.65 x 10⁶ psi to have compressive strengths of 6000 psi at 28 days. The resultant concrete mixtures were designated high, main, and low modulus according to aggregate moduli. #### Specimens 21. The 6- by 16-in. cylindrical creep and control specimens were cast horizontally in a steel mold that maintained parallelism of the 1-in. end plates which held the vibrating wire strain gages in place as shown in fig. 11. After consolidation on a vibrating table, the specimens were troweled to complete the circular cross section, and then placed in a 100 percent hum'', rog") room. After 24 hours, all specimens were stripped and the as-cast specimens were then coated with epoxy and returned to the fog room. The remaining cylinders were placed in lime-saturated water (limewater). Twenty-four hours later, as-cast specimens were given another coat of epoxy and were hermetically sealed with sheet copper and weighed. - 22. After 7 days of limewater curing, the air-dried specimens were removed from the limewater and placed in a room at 50 percent relative humidity and 73 ± 3 F for the remainder of the 90-day period preceding testing. Prior to testing, the air-dried cylinders were coated with epoxy and hermetically sealed in copper sheet. Twenty-four hours later, the copper sheet was coated with epoxy and a rubber membrane was placed around the cylinders to protect them from the hydraulic oil. - 23. In general, the test specimens were cured for 83 days as previously described, then placed in test rigs located in the proper environmental condition (73 or 150 F) for 7 days prior to loading. Appropriate loads were applied manually with a hydraulic hand pump. When the desired maximum load was attained, the vessel was switched to the manifold system (fig. 13) which maintained a constant load using an oil reservoir under regulated high-pressure gas. - 24. Types and magnitude of loads and environmental conditions for the 66 creep specimens are shown in table 1. There were two specimens, one each as—cast and air—dried, associated with each test condition. Of the four control specimens per batch, two each were as—cast and air—dried. One control specimen of each type was maintained in each of the environmental conditions throughout the test period. #### Experimental Results - 25. Concrete compressive strengths at 28 and 90 days were determined for all concrete batches. In addition, compressive strengths at advanced ages were determined for concrete of the first three batches, and the results are presented in table 2. - 26. Elastic strains due to the applied loads were determined by taking readings immediately prior to loading, after each load increment was added, and immediately after attaining maximum load. The air-dried uniaxial specimens loaded to 2400 psi at 73 F exhibited slightly higher strains (maximum of 26 millionths) at maximum load than companion ascast specimens. Concrete moduli of elasticity determined using the average of these two maximum elastic strains were 6.38, 5.66, and 3.08×10^6 psi for the high, main, and low aggregate moduli of elasticity, respectively. - 27. Creep strain-time relationships were determined for all lcaded specimens by subtracting the elastic strain and control strain from the total strain for each gage. Typical results are shown in fig. 14-17. The results of these tests reveal that, for a given temperature and loading, the use of the three different aggregates gave axial creep strain values differing by a factor of 1.0 (chert):1.7 (limestone):3.1 (graywacke), which correlated generally with the reciprocal of the modulus of elasticity of the aggregate and, hence, the modulus of elasticity of the concrete, which were in the proportions of 1.0:1.3:3.6 and 1.0:1.1:2.1, respectively. Using the 150 F environment generally increased the creep, with the overall increase averaging 86 percent. Axial creep strains also increased with load level and varied with the mode of loading. Taking an overall average for each mode, the higher axial creep strains were associated with the uniaxial loading followed by the triaxial loading in which strains were approximately 80 percent of those in the uniaxial mode. In the hydrostatic mode, average axial creep strains were approximately 35 percent of those in the uniaxial mode. The axial creep strains in the biaxial mode were tensile in nature, with a magnitude averaging slightly less than the hydrostatic strains or approximately 30 percent of those in the uniaxial mode. #### Discussion - 28. A comprehensive evaluation of the effects of aggregate moduli, moisture condition, testing temperature, and loading condition on the creep of concrete is currently being prepared and will be presented in a WES Technical Report. Nevertheless, the test results can be generally summarized as follows: - a. It is possible to proportion concrete mixtures containing widely varying aggregate moduli with subsequent variations in concrete moduli to have similar compressive strengths. - b. For the range of mixtures tested, it appears that creep of concrete is inversely proportional to the modulus of elasticity of the concrete. - c. In general, air-dried specimens had creep strains equivalent to or slightly higher than as-cast specimens at a given temperature. - d. Both as-cast and air-dried specimens tested at 150 F temperature exhibited higher creep strains than comparable specimens tested at 73 F temperature. e. In uniaxially and biaxially loaded specimens at both temperatures, creep strains occurred in the direction perpendicular to the direction of the applied stress. Thus, a creep Poisson's effect apparently occurred. #### Summary - 29. Results indicate that the moisture movement and rate of moisture loss in a PCRV wall subjected to a temperature gradient are such that these parameters should not significantly affect the properties of concrete mixtures which are properly proportioned, mixed, and consolidated to obtain sound, dense concrete. - 30. It appears that creep of concrete, for the range of conditions tested, is inversely proportional to the modulus of elasticity of the concrete, which is determined to a large extent by the modulus of elasticity of the aggregate. Hence, the selection of competent, high-modulus aggregates for PCRV concretes is of paramount concern. In addition, the significant increase in creep in a 150-F environment and the subsequent reduction in sustained modulus of elasticity of the concrete must be considered in predictions of vessel behavior over extended periods of time. Table 1 Creep Test Conditions | Batch | Concrete | Type of | Temp | Load, | psi | |-------|----------|-------------|------------|-----------------------|------| | No. | Modulus | Loading | F | $\sigma_{\mathbf{A}}$ | σR | | I | High | Uniaxial | 150 | 600 | 0 | | | | Uniaxial | 150 | 2400 | 0 | | | | Uniaxial | 73 | 2400 | 0 | | | | Uniaxial | 73 | 600 | 0 | | II | Main | Uniaxial | 150 | 600 | 0 | | | | Uniaxial | 150 | 2400 | 0 | | | | Uniaxial | 73 | 600 | 0 | | | | Uniaxial | 7.3 | 2400 | 0 | | III | Low | Uniaxial | 150 | 2400 | 0 | | | | Hydrostatic | 150 | 2400 | 2400 | | | | Uniazial | 73 | 2400 | 0 | | | | Hydrostatic | 73 | 2400 | 2400 | | IV | High | Hydrostatic | 150 | 2400 | 2400 | | | | Hydrostatic | 73 | 600 | 600 | | | | Hydrostatic | 73 | 2400 | 2400 | | y | Main | Biaxial | 150 | 0 | 600 | | | | Hydrostatic | 150 | 2400 | 2400 | | | | Biaxial | <i>:</i> 3 | 0 | 600 | | | | Hydrostatic | 73 | 600 | 600 | | | | Hydrostatic | 73 | 2400 | 2400 | | VI | Main | Biaxial | 150 | 0 | 2400 | | | | Triaxial | 150 | 2400 | 600 | | | | Triaxial | 73 | 2400 | 600 | | | | Biaxial | 73 | 0 | 2400 | | Vll | High | Biaxial | 150 | 0 | 2400 | | | | Biaxial | 150 | 0 | 600 | | | | Triaxial | 150 | 2400 | 600 | | | | Triaxial | 73 | 2400 | 600 | | IJIV | Low | Uniaxiai | 150 | 600 | 0 | | | | Biaxial | 150 | 0 | 2400 | | | | Biaxial | 150 | 0 | 600 | | | | Triaxial | 150 | 2400 | 600 | | | | Triaxial | 73 | 2400 | 600 | | | | | | | | Table 2 Compressive Strength Test Results | | | Compressive Strengths, psi | | | | | | |------|---------|----------------------------|---------|---------|-----------|-------|--------| | Age, | Type of | High | Modulus | Main Mo | odulus | Low M | odulus | | days | Curing | 73 F | 150 F | 73 F | 150 F | 73 F | 150 F | | 28 | S | 6690 | | 6600 | | 6320 | | | | D | 6970 | | 7320 | | 6700 | | | 90 | S | 7890 | | 7480 | | 7160 | | | | D | 8010 | | 8110 | | 7570 | | | 183 | S | 7480 | 8,660 | 8590 | 8560 | 8370 | 8690 | | | D | 9250 | 3,880 | 8590 | 7890 | 8220 | 7990 | | 365 | S | 8160 | 10,010 | 9110 | 9430 | 9350 | 8200 | | | D | 8840 | 8,410 | 8660 | 8380
· | 8530 | 8710 | | 455 | S | 8160 | 9,855 | 9140 | 8690 | 9350 | 9250 | | | D | 9480 | 9,030 | 8980 | 8380 | 8345 | 9295 | S = As-cast D = Air-dried Fig. 1. Simulated location of specimen in vessel Fig. 2. Embedded instrumentation for moisture migra ion studies - view from closed end 752 Fig. 3. Temperature rise Fig. .. Temperature versus time Fig. 5. Moisture content versus tim Fig. (. Indicated strain distribut. CONCRETE TEMPERATURE (O.61M) METAL PLATE INSULATION METAL PLATE Fig. 7. Heating arrangement Fig. 8. Temperature variation along $\not\in$ of specimen after heating Fig. . Indicated strain distribution after heating Fig. 10. Cerrecter strain variation along centerline of specimen Fig. 11. Moisture content versus time Fig. 12. Mold for creep and control specimens with vibrating wire strain gages in place Fig. 13. Multiaxial creep test rigs, 73 F Fig. 14. Creep strain-time relations for uniaxial loaded as-cast specimens at 73 F Fig. 15. Creep strain-time relations for hydrostatically leaded air-dried specimens at 7° and 150 F de la servicio de la companya de la Section of the sectio Fig. 16. Creep strain-time relations for biaxially loaded air-dried specimens at 150 F and the second of o Fig. 17. Creep strain-time relations for triaxially loaded as cast specimens at 73 F